This paper presents recent progress towards developing a prognostic health management framework for passive components of advanced reactors (AR). The focus of this paper is on lifecycle prognostics for passive components using a Bayesian prognostic algorithm that provides a natural framework for incorporating different sources of variability and uncertainties inherent in the operations of AR. High-temperature creep damage, a prototypic failure mechanism in AR materials, is used as the context for this research. A Bayesian model selection approach is implemented to select the appropriate creep degradation model at any given time, using relevant sensor measurements reflecting the material degradation state. The model selection approach, based on reversible jump Markov chain Monte Carlo methods, is integrated with Bayesian particle filter-based prognostic framework. The proposed approach is evaluated using strain measurements obtained from accelerated creep testing of stainless steel specimens. Results indicate feasibility of the proposed approach in accurately identifying the creep degradation stage from the available measurements at a given time. Effect of uncertainties in material degradation model and measurement noise on the performance of the prognostic algorithm is also investigated.